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Demand models typically use structured data for estimating the value of product characteristics. How-

ever, for several product categories such as automobiles, consumers emphasize that visual characteristics

of the product are significant demand drivers. Since visual characteristics are typically in high-dimensional

unstructured data (e.g., product images), this poses a challenge to incorporate them in demand models. We

introduce a method that enables estimation of demand using visual characteristics, by building on the BLP

demand model with recent advances in disentangled representation learning. Our method also overcomes the

challenge of not having supervised signals, which are required for good disentanglement, by using the demand

model as supervisory signal. We discover independent and human interpretable visual characteristics directly

from product image data, while simultaneously estimating equilibrium demand in a competitive automobile

market in the UK. We conduct a counterfactual analysis using a recent dramatic change in the visual design

language of BMW cars, and show our predicted results align with actual changes in BMW market share. To

our best knowledge, this work is the first to link visual product characteristics with demand–in other words,

to quantify the economic value of design.
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Exterior look/design is the top reason shoppers avoid a particular vehicle (30%),

followed by cost (17%).

−JD Power Avoider Study 2015

1. Introduction

Products have long been represented as bundles of characteristics (Lancaster 1966), with

both functional and form characteristics serving as value drivers (Rosen 1974). Visual

characteristics comprising product form are often a primary factor in a product’s market

success (Jindal et al. 2016, Veryzer Jr 1993). Visual characteristics are designed by firms for

everything from communicating intended product differentiation and segmentation (Bloch

1995, Homburg et al. 2015), signaling brand equity (Aaker 1997), and of course, to making

appealing products that consumers choose (Creusen and Schoormans 2005, Norman 2013).

Despite their importance, however, visual characteristics have received relatively little

attention compared to structured product characteristics (e.g., size or brand) in widely-

adopted quantitative models of consumer demand. This has arguably been due to two
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related challenges. First, quantitatively representing the way a product looks is inherently

challenging, as even low-fidelity product form representations (e.g., wireframes or silhou-

ettes) may require hundreds of highly interdependent variables (e.g., Bezier curve control

points); this challenge scales to the millions of variables when using product images.1 This

high dimensionality poses significant estimation challenges for conventional demand mod-

els that typically operate with 10’s of structured product characteristics. Second, even with

a tractable representation of high-dimensional product form representations, there are a

lack of methods that aim to causally infer the effect of visual product characteristics on

an economic primitive such as consumer demand.

Our research aims to estimate the economic value of visual product characteristics. We

aim towards overcoming the two aforementioned challenges by integrating two method-

ologies that have typically been distinct in the fields of quantitative (econometric) models

and machine learning. Specifically, we propose an overall model that integrates two compo-

nent models, an econometric demand model and a “disentanglement”-based deep learning

model. At a high level, the disentanglement-based deep learning model identifies visual

characteristics from images of products, while the demand model identifies how those

visual characteristics (alongside other more conventional structured product characteris-

tics) affect a demand system comprised of a competitive market of firms and heterogeneous

consumers. This leads to the following substantive and methodological research questions.

From a substantive perspective, we seek to understand whether any of the multiple

identified visual characteristics impact consumer choices and market outcomes, and if so,

to what degree. It is also useful to understand how consumers trade off between structured

and visual characteristics. Second, we aim to examine whether and when products “close”

in the space of structured characteristics are also close in the space of visual characteristics.

Third, we aim to understand how substitution occurs with products close in structured

characteristics compared to the space of visual characteristics.

From a methodological perspective, we seek to understand whether demand models can

improve the deep learning component of our integrated model. Namely, we ask whether

a demand model describing consumer choices can be used as a supervisory signal in the

absence of “ground truth” to enable better discovery of such visual characteristics. Simi-

larly, in the opposite direction, we seek to understand whether the deep learning compo-

nent of this integrated model can improve the properties of the demand model; namely,

1 For example, even a 1000 pixel × 1000 pixel black and image is 1 million variables, each having a value of 0 or 1.
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whether preference parameters obtained by incorporating visual characteristics differ from

a baseline that includes only structured characteristics.

For the demand model component of our overall model, we build upon the well-regarded

and standard demand model of Berry et al. (1995) (BLP) to allow consumers to have

preferences over visual product characteristics. BLP has been popular across a spectrum of

applications in marketing and economics for a number of reasons; among them are that the

approach can be used with market-level data on products and outcomes, it accommodates

unobservable product characteristics, allows for observable and unobservable consumer

heterogeneity, and importantly accounts for endogeneity of prices (which can depend on

the unobservable product characteristics).

For the deep learning component of our overall model, we need a model that can identify

visual characteristics from product image data. This task is challenging due to the afore-

mentioned high dimensionality of images. However, to integrate visual characteristics with

the demand model, it is necessary to obtain a lower-dimensional representation. One may

first consider obtaining these lower-dimensional factors using classical linear approaches

like PCA, or similarly, classical nonlinear approaches like autoencoders (Bengio et al. 2013).

However, the resulting factors typically have no semantic meaning to humans (i.e., they

are not interpretable). Alternatively, we could have prespecifed the relevant visual charac-

teristic, as in Zhang et al. (2021) or Liu et al. (2020). However, we might not be able to

interpret what aspects of the images directly correspond to any given characteristic, lim-

iting practical application by managers. Moreover, such an approach would not be able to

generate products with different visual characteristics, limiting our ability to ask research

questions with counterfactuals.

We instead leverage recent developments in an area of deep learning called “disentangled

representation learning,” which aims at identifying the “true” set of visual characteristics

from high-dimensional images in a manner that is semantically interpretable to humans.

Our deep learning model is built on variational autoencoders (VAE) (Kingma and Welling

2014), and thus comprised of an “encoder” and “decoder.” The “encoder” takes an image

of a product as input, which undergoes a sequence of highly non-linear transformations

to output a lower-dimensional latent code corresponding to the visual characteristics. The

“decoder” then takes that latent code as input and outputs a reconstruction of the original
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image. This process thus represents the content of a high-dimensional image using a low-

dimensional latent code. To promote disentanglement of the learned visual characteristics,

we extend the VAE using additional losses to enforce learned visual characteristics to

be uniquely represented, statistically independent, and minimally lossy relative to the

original product image data. While the machine learning literature has shown this approach

does not guarantee our goal of identifying the “true” semantically interpretable visual

characteristics in a purely unsupervised manner (i.e., using only product image) (Locatello

et al. 2019), one of our contributions is to use the demand model as a supervised signal for

the deep learning component of our model.

Finally, our integrated demand-and-disentangled-representation-learning model has two

distinct specifications, which we term “open loop” and “closed loop.” In the open loop

specification, the (vector of) visual characteristics obtained are included as additional

product characteristics in the utility specification and the demand model is estimated

once. In contrast, in the closed loop specification, we jointly use the demand model as a

supervisory signal in order to obtain a disentangled representation of visual characteristics.

The demand model provides useful supervision, since it allows consumers to respond to

visual characteristics (in addition to structured characteristics), and incorporate them in

their choice process, which in turn must match market outcomes. Thus, improving the loss

of the demand model could potentially benefit the visual disentanglement as well.

We next test our integrated model using an empirical application. Specifically, we eval-

uate the impact of visual characteristics on consumer preferences and aggregate demand

for the automobile market in the UK. We focus on the automobile market because these

represent important and substantial purchases for consumers, and it is a product where

visual characteristics are likely to have an impact.2 As discussed earlier, automobile buyers

report that visual design is one of the most important criterion in purchase.3 The data

used here spans the period 2008-2017 and includes a total of 49 brands and 400 models,

ranging in price from £6,413 (Perodua Kelisa) to £166,652 (Bentley Bentayga). We sepa-

rately obtain structured data on prices, product characteristics and market outcomes, and

unstructured image data corresponding to the “front view” of those automobile models.

2 According to Leader Bank (https://www.leaderloancenter.com/the-2nd-most-expensive-thing/), an automobile is
typically the most expensive consumer product other than a house

3 According to JD Power 2015 US Avoider Study (https://www.jdpower.com/business/press-releases/2015-us-avoider-
study), exterior design is the top reason shoppers avoid a particular vehicle).
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We estimate both the open loop and closed loop variants of the model, and do so with and

without incorporating visual characteristics into consumer preferences.

Our proposed approach obtains 3 visual characteristics that are human interpretable

from the image in both the open and closed loop specifications of our model. These char-

acteristics can be interpreted as body shape, boxiness (presence of angular versus curved

features), and grille size. We find that the price elasticities are more negative in the presence

of visual characteristics in the model, compared to the baseline BLP estimates.

We lastly use our model to simulate a counterfactual corresponding how changing the

visual form of a product(s) impacts economic valuation and ultimately demand for the

firm’s products. While most changes in automoboile visual characteristics are relatively

mild “facelifts” and “refreshes”, dramatic variations do occasionally come up in which a

firm chooses to make dramatic changes. A recent example is BMW’s change in “design lan-

guage” in Model Year 2020, in which BMWs changed their iconic and distinctive “kidney

bean” front grille, a mainstay amongst BMWs continual product line of coupes, sedans,

and CUV/SUVs. We conduct a counterfactual where BMW introduces such a visual design

change earlier, and then evaluate market outcomes after this introduction. This counter-

factual enables us to quantify the value of design, and also to identify how the substitution

patterns change when the new design is introduced, and compare that to the case where

the prior design was continued.

The rest of this paper is structured as follows: Section 2 discusses related literature, Sec-

tion 3 introduces the proposed integrated economics-and-machine learning model, Section

4 details the empirical application of the approach, Section 5 simulates a counterfactual in

visual design, and Section 6 concludes this work with a discussion and opportunities for

future work.

2. Literature Review

Our work is related to three broad streams of literature: First, it is related to the BLP

class of demand models in economics. Second, it builds on “disentangled” representation

learning in the machine learning literature to find human-interpretable patterns within

unstructured data corresponding to the visual characteristics we seek. Third, it is related

to the use of unstructured data in empirical modeling within marketing.
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2.1. Demand Models

The random coefficient logit model described in Berry et al. (1995) has been extensively

used for estimating demand for differentiated products in economics as well as marketing.

It addresses the potential endogeneity of price by using an instrumental variable approach

similar to Berry (1994). It does so by assuming that a consumer’s utility for a good depends

not only on its observed product characteristic (available as data to econometrician) but

also on unobserved product characteristics (observed by the market participants such as

firms and consumers but not observed by the econometrician). The unobserved product

characteristics are correlated with price. Besides addressing price endogeneity, this model

showed that allowing flexible substitution patterns to reflect the heterogeneity in customer

tastes for observed product characteristics is important when estimating demand elastic-

ities. Finally, another key aspect of this model is the ability to work with aggregate data

at market level in which a large number of differentiated products are available.

Several papers have extended the BLP class of demand models. Nevo (2000) allowed

for interaction of observed heterogeneity with product characteristics in addition to only

considering unobserved heterogeneity. It also showed how to include product fixed effects

into the BLP class of models. Petrin (2002) and Berry et al. (2004) provide an approach to

incorporate micro data along with market data to estimate BLP models. They show that

not only does incorporating micro data directly allow us to obtain more richer substitution

patterns but also reduce the number of instruments required to solve the problem. Finally,

Grieco et al. (2021) allow the average unobserved quality to change across markets. This

allows them to study the evolution of market power over time.

We add to this rich literature by allowing for consumer’s utility to also depend on visual

characteristics of products. These visual characteristics are learned from product images

by using deep learning methods. Thus, we make available additional structured data to the

econometrician that was earlier present only in the form of unstructured data and hence

were unobservable to the econometrician.

2.2. Disentangled Representation Learning

Representation learning broadly refers to using machine learning to re-represent data from

its original observed representation into a different (typically lower-dimensional) represen-

tation with properties now better suited to a given task (Bengio et al. 2013). For example,

the classical model of principle component analysis (PCA) may be viewed under this lens if
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one wanted to re-represent data into lower-dimensional linear subspace spanned by vectors

that best explain the original representations variance; or likewise, the classical model of

an autoencoder, which aims at nonlinearly compressing data while minimizing informa-

tion loss of the new representation. In this work, we aim to re-represent high-dimensional

unstructured data (i.e., images of automobiles) into representations that are not just lower-

dimensional or uncorrelated, but are also semantically interpretable to humans for use in

demand models. Recent advances in an area of deep learning known as “disentangled”

representation learning seeks exactly such interpretable representations.

Most recent advances in disentanglement representation learning methods are built using

deep generative models that both re-represent the original observed data to a corresponding

lower-dimensional representation, as well as enable the generation of new data. Within

deep generative models, variational autoencoders (VAEs) (Kingma and Welling 2014) have

been most widely adopted for disentangled representation learning. This is due to the

VAE being autoencoder, and thus naturally suited for nonlinearly re-representating high-

dimensional data, but also due to the VAE being a probabilistic extension of the classical

autoencoder that adopts a variational Bayesian formulation of the autoencoder. In our

case, this latter is useful as it enables us to model full posterior uncertainty over the

visual characteristics for each corresponding product image in a principled manner, while

simultaneously enabling us to enforce disentanglement via statistical independence over

the learned visual characteristics in aggregate.

Several methods accordingly extend the VAE in this manner by reformulating and/or

reweighing the two terms in the traditional VAE, namely, the reconstruction accuracy

between and observed image and the reconstructed image from the encoding and decoding

process, and the KL-divergence of the learned characteristics from a reference prior dis-

tribution. (Higgins et al. (2017) showed that trading off these two terms by upweighting

the KL-divergence term promoted disentanglement. This was further extended by Burgess

et al. (2017), Kim and Mnih (2018), and Chen et al. (2018), who decomposed this KL-

divergence term into several sub-terms to give even more fine-grained control over the

disentanglement process which we elaborate formally in Section 3.2.

One key challenge of any disentanglement method is that, with purely unsupervised

methods, there is no theoretical guarantee for learning unique disentangled representations

Locatello et al. (2019). In other words, we need some form of relevant supervision to
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identify independent and semantically interpretable visual characteristics. To address this

challenge, Locatello et al. (2020) showed that a small number of labelled examples with even

potentially imprecise and incomplete labels is sufficient to perform model selection to learn

disentangled representations. Further, Sisodia et al. (2022) showed that structured product

characteristics can also serve as a supervisory signal. An advantage of using structured

product characteristics is that this data is typically available in marketing datasets. This

means that there is no need for additional labeling. In this paper, we address this theoretical

challenge by using a demand model as a supervisory signal. Implicitly, we assume that

demand is a function of visual characteristics as well as other known observed product

characteristics.

2.3. Empirical Models with Unstructured Data

Unstructured data (text, images etc.) are rich in content and very high dimensional,

which makes it challenging to tractably incorporate in marketing models. There are several

approaches to incorporate visual characteristics to study their effect on demand. First, we

can define a specific set of visual or textual attributes of interest. For example, in a study

on AirBnB images, Zhang et al. (2021) examines specific interpretable properties of images

like composition, color or aspect ratio that can be derived from the image. Similarly, Zhang

and Luo (2018) defines the visual characteristics of images uploaded by customers to Yelp

to study their effect on restaurant exit, and Malik et al. (2019) defines the visual char-

acteristics of profile pictures from an online professional social network to study beauty

premium in career progression. Overall, in this approach, the selected characteristics typi-

cally have to be human labeled. More, this approach relies on researcher judgment, which

creates a challenge if they select an unimportant visual characteristics while omitting an

important one. 4 A second approach is to use classical statistical methods like PCA or

autoencoders (Bengio et al. 2013), which can reduce the dimensionality automatically,

however the disadvantage is that the characteristics obtained are not interpretable. Dew

et al. (2021) combines textual and image data to augment visual design of new brand

logos using autoencoders. Other empirical work using visual characteristics in marketing

includes the study of how brands visual identity can be listened in using online image (Liu

4 For example, a researcher studying the effect of hair color on a worker’s chance of getting promoted might conclude
that hair color has explanatory power. However, hair color is correlated with race and the explanation behind the
worker’s promotion might possibly be due to race.
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et al. 2020), identification of consumer needs for new products from textual review data

(Timoshenko and Hauser 2019), and the use of images to augment how designers develop

the aesthetics of products (Burnap et al. 2019). Liu et al. (2017) uses morphing techniques

to find visual characteristics of automobiles instead of using deep learning methods.

Our disentanglement approach aims to achieve the advantages of both the above, auto-

matically learning (discovering) and quantifying visual characteristics without human

labeling, but also obtaining independent and semantically-interpretable visual character-

istics. Our closed loop model also allows the deep learning and demand models to learn

from each other, with a view to improving the outcomes of each model.

Figure 1 An Integrated Model of Econometric Demand and Disentangled Representation Learning

Disentanglement 
Model (Deep 

Learning)

GMM Objective

Visual Characteristics

Econometric
Demand
Model

Deep Learning 
Disentanglement 

Model

Econometric
Demand
Model

Open Loop
Deep learning model learns visual characteristics 

independent of the demand model. Demand model 
estimation is done afterwards.

Visual 
Characteristics

Closed Loop
Deep learning model learns visual characteristics with the 
addition of the GMM objective in every learning step. We 

obtain demand model estimates along with visual 
characteristics once deep learning model is optimized.

3. Methodology

We now propose a method for estimating the economic value of visual product characteris-

tics. Our method may be at a high level conceptualized as a integrated model comprised of

two component models, an econometric demand model and disentanglement-based machine

learning model.

Figure 1 diagrams an overview of our integrated approach. At a high level, the

disentanglement-based machine learning model identifies visual characteristics from images

of products, while the demand model identifies how those visual characteristics (alongside

other more conventional structured product characteristics) affect a demand system com-

prising a competitive market of firms and heterogeneous consumers. We next formalize the

two components of our integrated model separately, followed by their integration using two
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distinct model specifications. Section 3.1 describes the demand model, including its supply-

side and demand-side assumptions, as well as parameter estimation. Section 3.2 describes

the disentanglement-based deep learning model that identifies visual characteristics from

product images. Section 3.3 describes the proposed integrated model, and specifically, the

“open loop” and “closed loop” specifications of this model. We provide a table of notation

in Table 1.

Table 1 Table of Notation

Demand Model Disentanglement Model
Symbol Meaning Symbol Meaning

j Products m image
t Markets v visual characteristic
i Consumers ρ(v) prior distribution
f Firms ρθ(m|v) Decoder neural net
T Number of Markets qϕ(v|m) Encoder neural net
Jt Number of products in market t θ Decoder’s parameters
It Number of consumers in market t ϕ Encoder’s parameters
Ft Number of firms in market t c Ground-truth factor of variation
ζ Model Parameters vinf informative visual characteristic
ζ1 Linear demand-side parameters L(θ,ϕ;m,v) Total Loss
ζ2 Non-linear common parameters Eqϕ(v|m) [logρθ(m|v)] Reconstruction Loss

ζ3 Linear supply-side parameters Iq(v,m) Mutual Information Loss

pjt Price KL

[
q(v)||

J∏
j=1

q(vj)

]
Total Correlation Loss

cjt Marginal Cost
∑J

j=1KL [q(vj)||ρ(vj)] Dimension KL Divergence Loss

xjt Observed product characteristic λ1 Weight on Total Correlation Loss
vjt Visual product characteristic λ2 Weight on GMM Objective
Uujt Indirect utility
δjt Mean utility
µijt Heterogeneous utility
ϵijt Idiosyncratic taste shock
dijt Choice indicator
sijt Choice probability
sjt Market share
ξjt Demand-side structural error
ωjt Supply-side structural error
ZD Demand Instruments
ZS Supply Instruments
W Weighting matrix
g Sample Moments
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3.1. Demand Model

We describe the BLP demand model (Berry et al. 1995) with the specification laid out in

Berry et al. (1999).

3.1.1. Consumers In each market t= 1, . . . , T , there are Jt differentiated goods and It

consumers. For each market, we observe average quantities, prices and product character-

istics for all Jt products.

Consistent with the standard BLP model, the indirect utility of consumer i from purchas-

ing product j in market t is a function of observed product characteristics xjt, unobserved

product-market characteristics ξjt, price pjt, consumer characteristics νit and unknown

parameters, ζ. The total number of observed characteristics for the product is K. We use

the specification written in Equation (1). Here, price pjt is endogeneous, since it could be

based on the unobserved product-market characteristics ξjt, and hence correlated with it.

The indirect utility is specified as:

Uijt = xjtβ1−αpjt/yit + ξjt+Σ
k1
(σk1

β1
xk1
jt ν

k1
it )+ ϵijt (1)

where xjt or observed product characteristics only includes structured product characteris-

tics, pjt is the price of product j in market t, yit is the income of the consumer i in market t,

ξjt is the unobserved product-market characteristic, νk1
it represents consumers i’s taste for

characteristic k1 in market t, and finally, ϵijt denotes a mean-zero idiosyncratic taste shock.

The unobserved product-market characteristics can reflect hard to quantify aspects of the

product such as quality or style. The unobserved product characteristics can be decom-

posed into visual product characteristics vjt and rest of the unobserved product-market

characteristics ξ̃jt. This decomposition is written in Equation 2. In a demand model with-

out visual characteristics, this would reduce to the typical BLP structural error ξjt. Note

that, even after we account for visual characteristics, the remaining unobserved product-

market characteristics ξ̃jt may still contain some unobserved visual characteristic, as well

as any other aspects of unobservable quality.

ξjt = vjtβ2 +Σ
k2
(σk2

β2
vk2jt ν

k2
it )+ ξ̃jt (2)

Each consumer i in market t has unit demand. Consumers choose among Jt =

{0,1, . . . , Jt} discrete choices including the outside good, denoted by j = 0. The utility of
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the outside good represents the choice of not purchasing any product in the market and

is given by Ui0t = ϵi0t. Consumers select the alternative (including outside good) with the

highest utility:

dijt =

1 if Uijt >Uikt for all k ̸= j

0 otherwise
(3)

Note that as in BLP, we can decompose the indirect utility in Equation (1) into a mean

utility, δjt in Equation (4) and a deviation from that mean, µijt, in Equation (5).

δjt(xjt, pjt, ξjt; ζ1) = xjtβ1+vjtβ2+ ξ̃jt (4)

µijt(xjt, pjt, νijt, yi; ζ2) =−αpjt/yit +Σ
k1
(σk1

β1
xk1
jt ν

k1
it )+Σ

k2
(σk2

β2
vk2jt ν

k2
it )+ ϵijt (5)

where xjt or observed product characteristics only includes structured product charac-

teristics, vjt is the visual product characteristics, pjt is the price of product j in market

t, yit is the income of the consumer i in market t, ξ̃jt is the unobserved product-market

characteristic, νk1
it and νk2

it represents consumers i’s taste for structured product charac-

teristics k1 and visual characteristics k2 in market t, and finally, ϵijt denotes a mean-zero

idiosyncratic taste shock.

We denote ζ = (ζ1, ζ2), a vector of all the parameters in the model. The vector ζ1 contain

the linear parameters or the mean preference on xjt, i.e. β1 and on vjt, i.e. β2. These pref-

erences are common across all consumers. The vector ζ2 contain the nonlinear parameters

or the standard deviation from mean preference i.e. σβ1 and σβ2 as well as the term on the

price α. These nonlinear parameters introduce heterogeneity in preferences over structured

product characteristics.

Using the standard assumption that ϵijt are i.i.d. with the Type I extreme value dis-

tribution, the probability sijt that consumer i chooses product j in market t is given by

Equation (6) below.

sijt =
exp(δjt+µijt)

Σk∈Jt exp(δkt+µikt)
(6)

Aggregate market shares sjt are obtained by integrating over the choices made by het-

erogeneous consumers as represented in Equation (7).

sjt =

∫
exp(δjt+µijt)

Σk∈Jt exp(δkt+µikt)
dF i (7)
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3.1.2. Firms We assume that automobile firms, indexed by f and part of a set Ft, play

a static, full information, simultaneous move pricing game each period. Firms choose the

price levels of all their models with the objective of maximizing overall profit. We specify

a constant marginal cost cjt for a product j in market t. The pricing first order condition

for vehicle j is given by Equation (8).

sjt+Σj∈Jt(pjt− cjt)
∂sjt
∂pjt

= 0 (8)

We parameterize the marginal costs as written below in Equation (9).

cjt = xjtγ1 +wjtγ2+ωjt (9)

where xjt are product characteristics, wjt are observable cost-shifters and ωjt are unob-

served cost-shifters. We can estimate the marginal costs for each product when we solve

the supply model jointly with the demand model. We do not explicitly include visual

characteristics in the supply-side and so they are assumed to be part of the unobservables.

3.1.3. Instruments In this demand model, we assume that a consumer’s utility depends

up on the observed product characteristics as well as unobserved (to the researcher) prod-

uct characteristics. Firms observe these unobserved product characteristics and set then

set prices, which implies that price is endogenous and necessitates the use of instruments.

There are multiple options for instruments. First, we could use exogenous cost shifters.

These are valid if we assume that firms respond to cost shifts by changing prices, and

not by changing product characteristics. Second, we could use observed product character-

istics other than price. This would be valid if we make a timing assumption that firms

first set observed product characteristics, then observing the “unobserved” product char-

acteristics (structural error), and then set prices. This assumption would be supported by

the observation that firms change prices frequently, whereas product characteristics are

altered less frequently. Third, we could use Hausman instruments, a common example of

which includes prices in other markets, if we have multiple markets that have the same

product. Finally, we could use observed product characteristics of other products. One

example of these instruments is referred to as BLP instruments in which we take sums of

characteristics of other products made by the same firm and sums of characteristics of all

other firms. We present them in Equation (10). Another example instead uses differences
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in characteristics. They are referred to as differentiation IVs (Gandhi and Houde 2019).

To construct differentiation IVs, we define the difference in characteristic space between

product j and product k (in market t) as djkt = dkt−djt for each characteristic in xjt. Using

the differences in characteristic space, we construct local and quadratic forms of differ-

entiation IVs. Both these set of differentiation IVs assume that rival as well as non-rival

products close to the focal product in the characteristics space affect the firm’s pricing

decision more than products far away. We present these instruments in Equation (11) and

Equation (12). Conlon and Gortmaker (2020) found that differentiation IVs perform better

than BLP instruments in simulation exercises. This result is not surprising because of the

somewhat localized nature of competition in the product characteristic space. Moreover,

differentiation IVs also reduces the problem of weak instruments that might be present

in BLP instruments. Note that the instruments used in Sudhir (2001), who calculated

average of characteristics only within the same segment and not the entire market, so as

to reflect localized nature of competition is similar in spirit to differentiation IVs. In our

main analysis, we use the BLP instruments.

ZBLP = {1, xjt,wjt,Σj∈Jt {j}1,Σj ̸∈Jt1,Σj∈Jt {j}xjt,Σj ̸∈Jtxjt} (10)

Zlocal = {1, xjt,wjt,Σj∈Jt {j}1(|djkt|<σl(d)),Σj ̸∈Jt1(|djkt|<σl(d)} (11)

where σl(d) denotes the standard deviation of the distance in the characteristic space.

Zquadratic = {1, xjt,wjt,Σj∈Jt {j}d
2
jkt,Σj ̸∈Jtd

2
jkt} (12)

With the addition of demand instruments ZD
jt , we construct demand-side moment condi-

tions of the form E[ξ̃jtZ
D
jt ] = 0. Similarly, we also construct supply-side moment conditions

of the form E[ωjtZ
S
jt] = 0 using supply instruments ZS

jt.

3.1.4. GMM Estimator We construct a GMM estimator using both supply-side and

demand-side moment conditions.

g(θ) =

 1
N
ΣjtE[ξ̃jtZ

D
jt ]

1
N
ΣjtE[ωjtZ

S
jt]

 (13)
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We construct a nonlinear GMM estimator for ζ with some weighting matrix W in Equa-

tion (14). We solve this problem twice. First, we obtain a consistent estimate of W and

then an efficient GMM estimator.

min
θ

g(ζ)′Wg(ζ) (14)

3.2. Disentangled Representation Learning

We now present a method to discover independent and human interpretable visual char-

acteristics from product images. We refer readers to Sisodia et al. (2022) for more details.

We have a dataset m of images. We assume that they are generated from a distribution

parameterized by visual characteristics v. The generative model is a combination of the

prior ρ(v) set to an isotropic unit Gaussian N (0,1) and a decoder neural net ρθ(m|v). The

true posterior is intractable as in variational Bayesian inference (Blei et al. 2017) and so

it is approximated as log qϕ(v|m) = logN (v;µdµdµd,σdσdσd
2I) where µdµdµd and σdσdσd are the mean and

the s.d. of the approximate posterior. The loss for the original VAE is written in Equation

(15). We refer readers to Kingma and Welling (2014) for its detailed derivation.

L(θ,ϕ;m,v)︸ ︷︷ ︸
VAE Loss

= Eqϕ(v|m) [logρθ(m|v)]︸ ︷︷ ︸
Reconstruction Loss

+ KL [qϕ(v|m)||ρ(v)]︸ ︷︷ ︸
Regularizer Term

(15)

In Equation (16), we decompose the regularizer term in Equation (15) into three terms

(Chen et al. 2018, Hoffman and Johnson 2016, Kim and Mnih 2018). We follow the

β−TCVAE method (Chen et al. 2018) by imposing a heavier penalty on the total correla-

tion loss term. We provide an intuition behind each of the loss terms below.

L(θ,ϕ;m,v)︸ ︷︷ ︸
Open Loop Loss

= Eqϕ(v|m) [logρθ(m|v)]︸ ︷︷ ︸
Reconstruction

Loss

+ Iq(v,m)︸ ︷︷ ︸
Mutual

Information
Loss

(16)

+ λ1 KL

[
q(v)||

J∏
j=1

q(vj)

]
︸ ︷︷ ︸

Total Correlation
Loss

+

J∑
j=1

KL [q(vj)||ρ(vj)]︸ ︷︷ ︸
Dimension-Wise

KL Divergence Loss

Reconstruction Loss: Penalizing this term encourages the input data m to be as similar

to the reconstructed output m̂(v) as possible. This means that we want the discovered
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visual characteristics to have the necessary information so that the reconstructed output

is as close as possible to the input image.

Mutual Information Loss: Penalizing this term means encouraging the visual charac-

teristics v store as little information about the product image m as possible from an

information-theoretic point of view (Achille and Soatto 2018). Although it seems counter

intuitive that penalizing this term would encourage disentangled representation, but it

allows the visual characteristics to not store any nuisance information.

Total Correlation Loss: Penalizing this term encourages the discovered visual character-

istics v to be statistically independent (Watanabe 1960). A zero loss on this term means

that KL divergence is zero and the discovered visual characteristics are statistically inde-

pendent. A λ1 > 1 penalty on this term means that we are trading off reconstruction

accuracy for more statistically independent disentangled representations.

Dimension-Wise KL Loss: Penalizing this term encourages the distribution of each visual

characteristic of every datum to be close the prior distribution. The prior is typically

assumed to be Gaussian. This term promotes a continuous latent space, which allows

generation from a smooth and compact region of latent space.

3.3. Integrated Model of Visual Characteristics Discovery and Demand

In this section, we describe our proposed integrated model of econometric demand and

disentangled representation learning, referred to integrated model hereafter. Our integrated

model furthermore has two different model specifications, which we call open loop and

closed loop.

In both open and closed loop model specifications, we assume that a consumer’s util-

ity depends upon observed product characteristics (including structured and visual prod-

uct characteristics), unobserved product characteristics, price as well as an idiosyncratic

taste. The primary difference between the open loop and closed loop model specification is

whether the demand model and disentangle representation learning model is separable or

not. We later test the two specifications of of integrated model against a baseline approach.

The baseline approach (Model B) is the same as the one described in Berry et al. (1995),

and does not incorporate visual characteristics.

In the first model specification, open loop, we first automatically discover the visual

characteristics using disentangled representation learning without specifying the number

or nature of those characteristics. The discovered characteristics are obtained for each
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product, and then included as visual product characteristics in the demand model. These

visual characteristics are thus similar to structured product characteristics and can be

treated as data during the estimation of the demand model. We can obtain estimates

of consumer preferences for these visual characteristics similar to how preferences over

structured characteristics are ordinarily obtained.

The open loop class of demand model relies on an unsupervised method for finding

disentangled representations. Although the unsupervised method for finding disentangled

representations has been found to work in practice, Locatello et al. (2019) proved out that

there was no theoretical guarantee to learn disentangled representations without supervi-

sion. When the visual characteristics are known ex-ante, then we refer those characteristics

as ground truth. When ground truth for visual characteristics is available, then the deep

learning literature suggests using the learned visual characteristics to predict the known

labels of ground truth Locatello et al. (2020).

In the second specification, called closed loop, we allow for the disentanglement repre-

sentation learning to use the demand model as a supervisory signal. Although supervisory

signals used in the ML literature always rely on knowing ground truth about the visual

characteristics, such an approach would not be suitable here since the purpose of out

framework is to specifically discover these visual characteristics. Our idea of using the

demand model to supervise the disentanglement model addresses this theoretical challenge

by supervising the VAE-based method to learn disentangled representations on the demand

model discussed in the Section 3.1.

The rationale for supervising on a demand model is that it captures how consumers

respond to changes in both structured and visual product characteristic space. This endoge-

nous response of consumers making choices and ensuring that those choices are consistent

with observed market outcomes provides us with additional variation that the disentan-

glement model can learn from. Supervising on a demand model means that the demand

model’s loss (or objective) function is included in the disentanglement model’s objective

function. The modified loss equation is specified in Equation (17). Whereas in both open

and closed loop specifications, the visual characteristics are incorporated similarly into the

demand model, in the open loop the visual characteristics discovered at the completion of

the disentanglement model do not change during the estimation process. However, in the

closed loop, as the demand model is estimated, the parameters (and objective function)
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of the learned demand model impact the estimation and results of the disentanglement

model, and therefore the discovered visual characteristics are continually updated to be

consistent with the demand model. In short, the discovered visual characteristics and the

estimates from the demand model will be different depending on whether we use open loop

or closed loop.

We detail the implementation details of how the demand model is incorporated within

the deep learning model in Table 1.

L(θ,ϕ;m,v)︸ ︷︷ ︸
Closed Loop Loss

= Eqϕ(v|m) [log pθ(m|v)]︸ ︷︷ ︸
Reconstruction

Loss

+ Iq(v,m)︸ ︷︷ ︸
Mutual

Information
Loss

(17)

+ λ1 KL

[
q(v)||

J∏
j=1

q(vj)

]
︸ ︷︷ ︸

Total Correlation
Loss

+
J∑
j=1

KL [q(vj)||p(vj)]︸ ︷︷ ︸
Dimension-Wise

KL Divergence Loss

+ λ2 GMM(v)︸ ︷︷ ︸
Demand Model

Objective

Algorithm 1 Closed Loop Estimation Algorithm

Initialize visual characteristics

Estimate demand model and store (β)

do ▷ Training Epochs Start

do ▷ Steps within Epoch

Learn vjt for images in a batch

Compute ξ̃jt using the vjt and β

Compute E[ξ̃jtZjt] and add it to the overall loss term

while end of epoch ▷ Epoch Ends

Obtain visual characteristics of entire data

Update mean coefficients (β)

Input β in subsequent epoch

while epochs≤ 200 ▷ Training Ends

3.3.1. Hyperparameter Selection using UDR Metric Both open and closed loop mod-

els require us to make modeling choices in the form of hyperparameters, which impact

the estimation process but are not parameters estimated with the model (e.g., number
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of training epochs). In both model specifications, we have a number of hyperparameters,

which are detailed in Table 2.

In the open loop model, we have a hyperparameter λ1, which is the weight on the total

correlation loss within the disentanglement loss (Chen et al. 2018). In the closed loop

model, in addition to λ1, we have a hyperparameter λ2, which represents the weight of the

demand loss when incorporated into the loss of the disentanglement model. For instance, a

higher value of λ2 will weigh or prioritize the demand loss more relative to disentanglement

loss terms like mutual information or reconstruction loss, which could reduce the quality

of disentanglement. See Section 3.2 for more details.

Hyperparameter selection additionally requires we define a metric for model selection.

We use the Unsupervised Disentanglement Ranking (UDR) (Duan et al. 2020) metric for

hyperparameter selection. This metric measures the robustness of disentangled representa-

tions to variance at different starting points. It relies on the assumption that for a particular

dataset, a disentangling VAE will converge on the same disentangled representation (up

to permutation, sign inverse, and subsetting). 5We select the hyperparameters λ1 and λ2

corresponding to the highest UDR. Moreover, this metric does not require access to the

ground truth data generative process unlike other metrics such as β-VAE metric (Higgins

et al. 2017), the FactorVAE metric (Kim and Mnih 2018), Mutual Information Gap (MIG)

(Chen et al. 2018) and DCI Disentanglement scores (Eastwood and Williams 2018). We

describe the steps to calculate UDR below in Table 3.

3.3.2. Neural Net Architecture Figure 2 shows the detailed neural net architecture.

Our architecture is a modified version of the one used in Burgess et al. (2017). We modify

the architecture to use images of 128 × 128 pixels as well as to incorporate a demand

model. We use Convolutional Neural Net (CNNs) to construct the encoder neural net

because we are working with images. We stack a sequence of CNN layers in the encoder

neural net so that we learn high-level concepts for images. We then use 2 fully-connected

5

1. Permutation: The same ground truth factor may be encoded by a model with two different seed values at a
different index position.

2. Sign inverse: A model with two different seed values may learn to encode the values of the generative factor in
the opposite order to each other.

3. Subsetting: A model from one seed value may learn a subset of the factors that the a model with a different
seed value has learned. This is because different seed values may encourage a different number of latents to be
switched off in the two models.
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Table 2 Hyperparameter Selection (Open and Closed Loop)

Step Description

1 Fix all the hyperparameters except λ1 (and λ2 in case of
closed loop)

2 Fix‡1 batch size=64, number of visual characteristics=20,
learning rate=0.0005, and the number of epochs=200

3 Sweep over λ1 = [1,5,10,20,30,40,50] (and
λ2 = [0,5,10,20,30,40,50] in case of closed loop)

4 Obtain disentangled representations for every combination of
λ1 (and λ2 in case of closed loop)

5 Calculate Unsupervised Disentanglement Ranking (UDR)‡2

Duan et al. (2020)
6 Select λ1 (and λ2 in case of closed loop) for disentanglement model

with the highest UDR.
7 Obtain the learned visual characteristics v for both open

loop and closed loop

‡1 Intuition for Hyperparameters:

1. Batch Size: On the one hand, if a very low value for batch size is used, then the

model takes longer to converge. On the other hand, if a very high value for batch

size is used, then the model loses its generalizability beyond the training set.

2. Number of Visual Characteristics: On the one hand, if a very low number of visual

characteristics is specified, then the model would force multiple factors of variation

to be coded into a single visual characteristic. On the other hand, if a very high

number of visual characteristics is specified, then the model would encourage a

single factor of variation would be split into multiple visual characteristics.

3. Learning Rate: On the one hand, if a very low learning rate is used, then the model

can get stuck on a local minima. On the other hand, if a very high learning rate is

used, then the model may overshoot the minima.

4. Number of Epochs: On the one hand, training for a very low number of epochs may

lead the model not to converge. On the other hand, training for a very high number

of epochs may lead to overfitting the training data.

‡2 See Section 3.3 for details related to UDR

(FC) layers to first flatten the output of the sequence of CNN layers and then reduce

the number of dimensions in order to learn a maximum of 20 visual characteristics. The

decoder neural net is simply the transpose of the encoder neural net, and is designed to

reconstruct the image from the 20-dimensional latent visual characteristics. Finally, we feed

the discovered visual characteristics in conjunction with structured product characteristics

to estimate demand. We add the GMM objective from the demand model to the loss of

the neural network. This ensures that the learned visual characteristics not only help in
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Table 3 UDR Algorithm

Step Description

1 For each trained model τ(λ), perform κ= 10 pairwise comparisons
2 Pairwise comparisons: models trained with the same λ but with

different seed values
2 Calculate the UDRτs1τs2

, where τs1 and τs2 index the
model τ learned with two different seed values

3 Calculate UDRτs1τs2
score as similarity matrix Rτs1τs2

where each entry is the Spearman correlation between the
responses of individual latent units of the two models.

4 Calculate absolute value of the similarity matrix as |Rτs1τs2
|

5 Compute the score UDRτs1τs2
for each pair of models‡

6 Compute the final score UDRτ for model τ by taking the median
of UDRτs1τs2

‡ UDRτs1τs2
= 1

vinfa+vinfb

[
Σb

r2aIKL(b)

ΣaR(a,b)
+Σa

r2bIKL(a)

ΣbR(a,b)

]
where a and b index the latent units of models τseed1 and τseed2 , respectively, ra =

maxaR(a, b) and rb =maxbR(a, b). IKL indicates an informative visual characteristics

within a model and vinf is the number of such characteristics: vinfa = ΣaIKL(a) and

vinfb =ΣbIKL(b)

Figure 2 Schematic Illustration of Proposed Approach
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disentanglement but also help in finding a lower GMM objective for the demand model.

Note that, the demand model is not estimated using neural nets and so not included part

of the nerual net architecture.



22 Sisodia, Kumar, and Burnap: Economic Value of Visual Product Characteristics

4. Empirical Application: UK Automobile Market
4.1. Data

We compiled a data set covering 2008 through 2017 consisting of automobile characteristics,

market shares and their images from the UK. Our primary source of data is manufacturer

suggested retail prices (MSRP), and characteristics of all automobiles sold in the UK from

2008-2017 that we obtain from Parker’s. We obtain information on sales (in 1000’s) and

images of the automobiles from DVM-CAR (Huang et al. 2021). Market research studies

have shown that 70% of consumers identify and judge automobiles by the appearance of

headlights and grille located on the face of the automobile.6 So we only select the images

of the front face of the automobiles and ignore other views. Since our sales data comes

at the make-model level, we choose the entry-level trim’s product characteristic as the

product characteristic. This is similar to similar to other studies of the automobile market

(Berry et al. (1995), Sudhir (2001), Petrin (2002), Berry et al. (2004)). We have product

characteristics for number of seats, number of doors, weight, horsepower, length, width,

miles per gallon, luggage capacity and dummy variables for whether the automobile has

automatic transmission, front wheel or rear wheel or four wheel drivetrain. The price

variable is the list price (in £1000’s) for the entry-level model. Prices in all years are

deflated to 2015 UK using the consumer price index.

We supplemented the Parker’s information with additional information, including vehi-

cle country of production and company ownership information. We also supplemented

additional information from the Office of National Statics, UK. We gathered the price of

ultra low sulphur petrol per gallon and ultra low sulphur diesel per gallon as well as the

number of households in the UK. Similar to Berry et al. (1995), we calculated miles per

UK pound (MP£) as miles per gallon divided by the price per gallon. We measure the

market size as the number of households in the UK. We use ‘HP/Weight’, ‘MP£’, ‘Space’

to construct the quadratic form of differentiation IVs.

In Table 4, we display summary statistics for the products at the make-model-year level.

There are 2460 observations in our sample and a total of 400 distinct models. The variables

include quantity (in units of 1000), price (in £000 units), the ratio of horsepower to weight

(in HP per 10 lbs.), the number of ten mile increments one could drive for one £ of gasoline

(MP£), tens of miles per gallon (MPG), and size (measured as length times width). We

6 URL: https://www.wsj.com/articles/SB114195150869994250
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provide sales-weighted means for each variable. We see that automobiles have improved

in terms of both power and fuel efficiency over these ten years. Prices for automobiles has

also gone up substantially from 2008 to 2017.

Table 4 Descriptive Statistics

Market No. of Observations Quantity Price HP/Wt Space MPG MP£

2008 240 5.992 21.374 0.416 1.245 4.577 0.760
2009 247 6.159 21.089 0.411 1.229 4.838 0.905
2010 243 6.655 21.584 0.414 1.247 5.022 0.837
2011 231 6.876 21.784 0.421 1.261 5.183 0.782
2012 244 7.028 21.533 0.422 1.264 5.422 0.825
2013 241 8.075 21.351 0.423 1.268 5.573 0.878
2014 251 8.608 21.697 0.431 1.277 5.702 0.962
2015 251 9.148 22.754 0.443 1.290 5.787 1.126
2016 253 9.225 24.067 0.457 1.305 5.692 1.149
2017 259 8.262 24.847 0.465 1.318 5.498 1.052
All 2460 7.626 22.353 0.433 1.274 5.390 0.948

In Table 5, we provide a range of continuous demand characteristics along by providing

the minimum, median and maximum values. The least expensive automobile in our sample

is the Perodua Kelisa while the Mercedes-Benz CL is the most expensive. Similarly, Citroen

Dispatch has the lowest ratio of horsepower to weight and Nissan GT-R has the highest

ratio of horsepower to weight. Smart fortwo is the smallest automobile and Audi SQ7 is the

largest automobile in terms of space. Finally, the Vauxhall VXR8 is the least fuel-efficient

automobile while the Lexus CT is the most fuel-efficient automobile.

Table 5 Range of Continuous Demand Characteristics

Variable 0th Percentile 50th Percentile 100th Percentile

Price 6.485 24.001 164.706
Perodua Kelisa Volkswagen Golf Bentley Bentayga

HP/Wt 0.0597 0.4697 1.3304
Aixam Crossline Chevrolet Trax Audi RS7

Space 0.6619 1.3363 1.7898
Aixam a751 Hyundai Kona Mercedes-Benz V Class

MPG 16.00 47.50 99.43
Hummer H2 Renault Laguna Hyundai Ioniq

MP£ 2.824 8.360 19.357
Hummer H2 Audi A5 Hyundai Ioniq

In Figure 3, we display images of 25 automobiles present in our dataset. Note that, we

converted color images to grayscale for our study (sales are also not available separately

by color). For each image, we have its associated make, model, year, structured product

characteristics and price.
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Figure 3 Sample of Automobile Images

4.2. Results

4.2.1. Disentanglement For model training, we initially set model hyperparameters

including the number of epochs=200, batch size=64, number of latent space dimen-

sions=20, learning rate=0.0005, and the threshold value on KL loss term=0.01. Table 2 in

the methodology section explains the intuition behind these terms. We select the hyperpa-

rameters corresponding to the weight on the total correlation term λ1, and the weight on

the demand loss term λ2 by using the UDR metric described in the methodology section.

Higher values of the UDR metric correspond to better disentanglement and discovery of

independent visual characteristics. Table 6 details the UDR metrics for the top 5 (high

UDR) and bottom 3 (low UDR) configurations. We find that the best model corresponds

to a positive weight on the demand loss term. The best configuration was with the weight

on the total correlation term or λ1 = 30 and the weight on the demand loss term or λ2 = 40.

This finding implies that supervising the disentanglement model on the demand model

(closed loop) aids in finding visual characteristics, as measured by the UDR metric. The

best disentanglement model with no supervision (open loop) corresponds to the weight on

the total correlation term or λ1 = 30 and the weight on the demand loss term or λ2 = 0.
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Table 6 Disentanglement Model Evaluation

Weight on total correlation loss Weight on demand loss UDR Model Type
(Best to Worst)

30 40 0.382 Closed Loop
30 30 0.381 Closed Loop
30 10 0.378 Closed Loop
30 0 0.377 Open Loop
40 30 0.371 Closed Loop
. . . . . . . . . . . .
1 0 0.042 Open Loop
1 50 0.041 Closed Loop
1 10 0.040 Closed Loop

We show the discovered visual characteristics in Figure 4. Each row in the image corre-

sponds to a visual characteristics. In each row, we change the value of one visual character-

istic while fixing the value of all the other characteristics. We find five visual characteristics

of a automobile’s front view to be informative. Rest of the visual characteristics were

uninformative i.e. changing the visual characteristic produces no change in the image. We

interpret these visual characteristics as written below, subject to validation by human

coders.

1. Body Shape: This characteristic can be interpreted as ratio of width to height. Auto-

mobiles with a low value on this visual characteristic have a low width to height ratio

and vice-versa.

2. Color: Automobiles with a low value on this visual characteristic are darker and vice-

versa. We ignore this characteristic in the demand model as automobiles come in

multiple colors and sales data is only available at make-model level.

3. We ignore this characteristic as this is entangled with color

4. Boxiness: Automobiles scoring low on this characteristic have a box-like shape and

vice-versa.

5. Grille: Automobiles scoring low on this characteristic have a smaller grille and vice-

versa.

Figure 5a shows the density plot of the discovered visual characteristics. Figure 5b shows

the visualization of the correlation between the three discovered visual characteristics.

4.2.2. Demand Model In this section, we compare a demand model only including

structured product characteristics with a demand model including both structured prod-

uct characteristics as well as visual product characteristics. Following Berry et al. (1995),

we first present results using OLS Logit and IV Logit. We include the ratio of horsepower
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Figure 4 Discovered Visual Characteristics
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to weight (HP/Weight), miles per pound (MP£), and space as structured product char-

acteristics. We also include three visual characteristics: body shape, boxiness and grille.

As expected, Table 7 shows that adding differentiated IVs as instruments for price shows

consumers are more price sensitive.

Next, we compare different specifications using the random coefficients demand model

in Table 8. The first specification does not include visual characteristics. The second spec-
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Table 7 OLS Logit & IV Logit Model Results

OLS Logit Demand IV Logit Demand

Baseline Open Loop Closed Loop Baseline Open Loop Closed Loop

Constant −12.46 −11.79 −11.73 −16.54 −15.35 −15.30
(0.37) (0.40) (0.40) (0.96) (1.10) (1.13)

HP/Weight 0.88 0.30 0.29 8.29 7.33 7.23
(0.35) (0.38) (0.38) (1.49) (1.77) (1.80)

MP£ 3.90 3.82 3.81 2.62 2.68 2.71
(0.19) (0.20) (0.20) (0.33) (0.34) (0.34)

Price −0.02 −0.02 −0.02 −0.17 −0.16 −0.16
(0.005) (0.005) (0.005) (0.03) (0.04) (0.04)

Space 0.97 0.83 0.81 5.35 4.84 4.74
(0.25) (0.25) (0.25) (0.96) (1.11) (1.12)

vbodyshape 0.16 0.15 0.29 0.28
(0.04) (0.04) (0.05) (0.05)

vboxiness 0.04 0.06 −0.24 −0.22
(0.05) (0.05) (0.09) (0.09)

vgrille 0.17 0.21 0.31 0.32
(0.07) (0.06) (0.07) (0.07)

Observations 2,460 2,460 2,460 2,460 2,460 2,460

ification includes visual characteristics when the demand model was not supervised on the

disentanglement model (open loop). The third specification includes visual characteristics

when the demand model was supervised on the disentanglement model (closed loop). Fig-

ure 6 plots the distribution of price elasticity for a specification only including structured

product characteristics (baseline) and a specification including both structured product

characteristics as well as visual product characteristics (closed loop).
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Table 8 Demand Model Estimates

Baseline Open Loop Closed Loop

(1) (2) (3)

Means (β
′
s) Constant −18.00 −17.00 −16.00

(0.73) (3.90) (4.00)
HP/Weight 9.00 5.90 5.40

(1.80) (2.10) (2.20)
MP£ 3.90 2.50 2.50

(0.32) (0.96) (0.97)
Space 11.00 8.20 7.80

(0.89) (2.90) (2.80)
vbodyshape 1.90 2.00

(0.40) (0.39)
vboxiness −0.37 −0.34

(0.10) (0.10)
vgrille 0.28 0.41

(0.19) (0.19)
Standard Deviation (σ′

βs) Constant 0.00 5.00 4.90
(0.00) (4.00) (4.10)

HP/Weight 3.70 0.00 0.00
(1.50) (0.00) (0.00)

MP£ 0.00 4.80 4.80
(0.00) (1.80) (1.70)

Space 0.00 3.80 3.80
(0.00) (1.50) (1.40)

vbodyshape 1.70 1.90
(0.37) (0.40)

vboxiness 0.00 0.00
(0.00) (0.00)

vgrille 0.00 0.00
(0.00) (0.00)

Term on Price (-p/y) −18.00 −16.00 −15.00
(1.40) (2.70) (2.80)

Supply-Side Terms Constant 3.70 3.70 3.70
(0.05) (0.05) (0.05)

ln(HP/Weight) 0.74 0.78 0.78
(0.03) (0.04) (0.04)

ln(MPG) −0.38 −0.31 −0.31
(0.04) (0.04) (0.04)

ln(Space) 1.60 1.60 1.60
(0.05) (0.06) (0.06)

Trend 0.01 0.01 0.01
(0.00) (0.00) (0.00)

Mean Own-Price Elasticity −7.45 −8.80 −8.62
S.D. Own-Price Elasticity 0.34 0.30 0.30
Mean Markup 0.15 0.13 0.13

GMM Objective 290 220 210
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Figure 6 Density Plot - Price Elasticities
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Figure 7 Evolution of BMW Kidney Bean Grille

5. Counterfactual Analysis: BMW Kidney Bean Grille

Admitting he had “noticed” and “been hurt” by the criticism of the enormous grille –

which has sparked countless memes on the internet and social media – BMW design

chief Adrian van Hooydonk says he understands why both buyers and the design

community had been shocked.

− Car Sales Blog, June 26, 2019

While visual characteristics are important across products (automobile models), most

products would not have dramatic variation across time or markets. However, there are

cases where firms choose to make dramatic changes in visual design. A recent example

is BMW’s change in “design language” in 2018, which was very polarizing. Historically,

BMWs have always had a grille known as the “kidney beans,” distinctively a visual cue

for all BMW models (Bangle 2001). For model year 2018, this longstanding mainstay

visual design was disrupted by dramatically elongating the grille, with many commentators

having a negative opinion on the new lung-shaped grille imposed on much of the BMW

product line.

We conduct a counterfactual analysis where BMW introduces such a visual design change

earlier at the end of our data period (2017), and then evaluate market outcomes following

this change. This counterfactual enables us to compare BMW’s market shares for the

original and the new design. We also seek to examine how the results differ for models that

include visual characteristics and those that do not.

We detail the steps to conduct the counterfactual analysis. First, we evaluate the case

where no change happens in BMW’s “design language” which represents the true outcome

we observe. We compute equilibrium prices and market shares for the entire market in

2017 using the demand estimates from the baseline model (without visual characteristics)
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and closed loop model (with visual characteristics). We report the model predicted BMW’s

market shares in 2017 in column (2) and column (3) of Table 9.

Next, we examine the case where BMW changes its “design language” in 2017. For the

closed loop model (with visual characteristics), we change the levels of the visual charac-

teristic vgrille and assume no change in unobserved product characteristic ξ̃jt corresponding

to BMW models. (Recall that ξ̃jt captures unobservable product characteristics excluding

the visual characteristics). The counterfactual visual design can be specified by changing

the discovered visual characteristics, specifically the characteristic vgrille for a change in

grille. We then recompute the equilibrium prices and market shares for the entire market

in 2017 using the demand estimates from model (with visual characteristics). We report

BMW’s counterfactual market shares in 2017 in column (5) of Table 9. Note that, with

a baseline model, when the BMW changes its “design language”, there is a change in

the unobserved product characteristic ξjt corresponding to BMW models, which implicitly

also captures visual characteristics (and any other unobservables at the product market

level). We assume that the unobserved product characteristic ξjt for BMW models come

from a standard gaussian distribution. We find the mean and standard deviation of ξjt

corresponding to BMW models. Next, for the counterfactual, for each make-model we take

multiple draws from this distribution and report the predicted market shares in column (3)

of Table 9. Finally, we report the ratio of BMW’s market shares with the counterfactual

design change to BMW’s market shares with no design change for the baseline model and

the closed loop model in column (6) and column (7) of Table 9. We note that our model

predicts an increase in the market share of BMW models with this new design change.

This finding is directionally and qualitatively consistent with the actual increase in sales

for Model Year 2018 (by 26%) for the BMW X-Series, where the change is grille was most

pronounced. Unsurprisingly, the baseline model does not point to any change in the market

shares for BMW models.

6. Discussion & Conclusion

Visual product characteristics are important to quantify in a semantically-interpretable

manner and incorporate into traditional demand models used in marketing and economics.

However, this is a challenging task especially when the model is required to discover visual

characteristics automatically. We propose a model that combines a disentanglement VAE-

based deep learning model that discovers visual characteristics with a BLP demand model
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Table 9 Counterfactual Design Change for BMW automobiles

Predicted Share in 2017
Original Data Baseline Baseline Closed Loop Closed Loop Ratio of Ratio of

(No Design Change) (CF Design Change) (No Design Change) (CF Design Change) (3) to (2) (5) to (4)
Make-Model (1) (2) (3) (4) (5) (6) (7)

1 Series 0.0040 0.0046 0.0046 0.0032 0.0044 1.00 1.38
2 Series 0.0023 0.0026 0.0026 0.0018 0.0025 1.01 1.37
3 Series 0.0045 0.0052 0.0053 0.0036 0.0049 1.03 1.34
4 Series 0.0025 0.0028 0.0029 0.0020 0.0027 1.03 1.35
5 Series 0.0022 0.0025 0.0025 0.0018 0.0023 1.01 1.29
6 Series 0.0002 0.0002 0.0002 0.0002 0.0002 1.00 1.30

M2 0.0004 0.0004 0.0005 0.0003 0.0004 1.01 1.29
M3 0.0001 0.0002 0.0002 0.0001 0.0001 1.00 1.30
M4 0.0003 0.0003 0.0004 0.0002 0.0003 1.02 1.29
X1 0.0020 0.0022 0.0022 0.0016 0.0021 1.00 1.35
X3 0.0012 0.0013 0.0013 0.0009 0.0012 1.02 1.32
X4 0.0003 0.0003 0.0003 0.0003 0.0003 1.00 1.34
X5 0.0009 0.0010 0.0010 0.0008 0.0010 1.01 1.30
X6 0.0002 0.0002 0.0002 0.0002 0.0002 1.00 1.30

to evaluate the economic impact of visual characteristics. Methodologically we compare

an open loop approach where the demand model just incorporates the visual character-

istics similar to structured characteristics, to a closed loop approach where the results

of the demand model can help train the disentanglement model to obtain better visual

representations.

We obtain 3 distinct visual characteristics (body shape, grille and boxiness) obtained

from the closed loop integrated model. We also find that after incorporating visual char-

acteristics, our estimates of elasticity are more negative relative to the baseline without

visual characteristics. We also conduct a counterfactual to examine the market impact of

a visual design change by an auto manufacturer (BMW), and find that market shares in

the counterfactual (in the new equilibrium) are higher for BMW, implying that the design

change had a positive impact.

Our research has certain limitations. First, although we use a standard demand model

like BLP, we do not have access to any individual consumer-level microdata. Thus, we are

not able to evaluate an approach like Berry et al. (2004). Second, the product images we use

in the model are currently limited to the front view of the automobile. It is likely that the

side and rear view might matter as well to buyers, and could be potentially useful to study.

Third, similar to most demand models, we assume exogeneity of product characteristics,

which include visual characteristics as well.

The framework presented here can be readily extended along several aspects. First, our

model can be applied across a broader class of demand models than considered in this

paper. In marketing applications, consumer-level data is commonplace and it would be

useful to extend our approach with such data. Second, it would be interesting to explore

where consumers form ‘visual consideration sets’ in addition to consideration sets that are
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usually based on structured characteristics Mehta et al. (2003). Finally, it would be helpful

to study the impact of visual design across other product categories.
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